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Abstract

Lithium cobalt oxide (LiCoO2 ) cathode material, with its high energy density and operating voltage, is
cutrently a mainstream material for lithium-ion battery cathodes. However, the crystal structure
collapse and lattice oxygen evolution under high-voltage conditions lead to rapid capacity decay,
severely limiting its practical applications. This paper analyzes the main factors affecting the cycle
performance and rate performance of lithium cobalt oxide, considering the physic- ochemical properties
of the particles, including elemental content and particle size, and provides a mathematical model linking
these properties to electrochemical per- formance. The study offers insights for the practical production
of high-voltage lithium cobalt oxide materials.

At the beginning, we embarked on investigating the correlation between the physicochemical attributes
(encompassing elemental composition and particle size) of lithium cobalt oxide and its cycle
performance. An Ordinary Least Squares (OLS) linear regression model was formulated, yielding a
robust fit with an R-Squared value of 0.94. This model was subsequently optimized through the
application of an XGBoost algorithm, achieving an R-Squared value nearing unity, signifying a
remarkable enhancement in model accuracy. Visual analysis of the results pinpointed the primary
determinants of cycle performance, arranged in descending order of significance: 'Cycle Index,” Mg
content, particle size distribution (D10), Zn, and AL

Then, our attention shifted to examining the link between the aforementioned physicochemical
characteristics and the rate performance of lithium cobalt oxide. The Jarque-Bera and Shapiro-Wilk tests
confirmed the normality of the data, fulfilling the prerequisites for hypothesis testing. An OLS linear
regression model was developed, demonstrating a strong goodness-of-fit with an R-Squared value
exceeding 0.8. This model was further honed with an XGBoost model, which achieved an R-Squared
score approaching 1, indicating a substantial refinement in model precision. The visualization of model
outcomes illuminated the key factors influencing rate performance, ranked in descending order of
importance: particle size distribution (D50), Al, Mn, Zn, Mg, Ni, and Fe.

Lastly, we devised an optimal strategy that encompasses the incorporation of strategic doping elements,
the utilization of high-temperature sol-gel methods to bolster cycle performance, and coating
modifications aimed at enhancing rate performance. This holistic approach fosters the structural stability
of lithium cobalt oxide crystals, fortifying their high-potential cycle capabilities, and concurrently

elevating their rate performance.
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1 INTRODUCTION

In the ever-evolving landscape of lithium-ion battery technology, the pursuit of optimizing
cathode materials, notably lithium cobalt oxide (LiCoO2), stands as a cornerstone for elevating
battery performance. At the heart of this endeavor lie three pivotal research questions, each
designed to deepen our understanding and refine the production of LiCoO2 cathodes.

LiCoO2, as the archetypal cathode material, boasts a high theoretical capacity, excellent structural
stability, and a high operating voltage that translates into higher energy density per unit mass or
volume. These attributes have made it the cornerstone of early commercial lithium-ion batteries,
powering a myriad of devices from smartphones and laptops to wearable technologies and
portable medical devices. However, the relentless pursuit of improved battery performance has
necessitated the exploration of strategies to further enhance the properties of LiCoO2,
particularly in terms of cycle stability, rate capability, and safety.

One of the most promising avenues for optimization lies in the realm of doping modifications.
By incorporating trace amounts of foreign elements such as aluminum (Al), magnesium (Mg),
and titanium (T1) into the LiCoO2 lattice, researchers have been able to subtly alter the material's
properties, addressing some of its inherent limitations. For instance, aluminum doping has been
shown to stabilize the crystal structure, reducing the risk of structural degradation during cycling,
thereby enhancing cycle life. Magnesium, on the other hand, can improve the electronic
conductivity, facilitating faster charge-discharge rates. Titanium incorporation, meanwhile, has
been reported to mitigate the negative effects of cobalt dissolution, further bolstering cycle
stability. The intricate interplay between the physicochemical properties of doped LiCoO?2,
including elemental composition, particle size, morphology, and crystal structure, and its
electrochemical performance—encompassing capacity retention, cycle life, rate capability, and
voltage fade—presents a complex yet fascinating research landscape. Understanding and
harnessing these relationships is crucial for designing advanced cathode materials that can push
the boundaries of lithium-ion battery technology.

In this context, a multivariate regression analysis offers a powerful tool for disentangling the
intricate web of correlations between various factors. By systematically analyzing the partial
physicochemical and electrochemical performance data of diverse LiCoO2 samples, researchers
can construct predictive models that elucidate the quantitative relationships between, for instance,
the precise elemental composition and particle size distribution of the cathode material, and its
subsequent impact on cycle stability and rate capability.

For a start, we delve into the intricate relationship between elemental content and particle size,
and their implications on cycle stability. By exploring the effects of doping with select elements
like aluminum (Al), magnesium (Mg), and titanium (T1), alongside meticulous control of particle
dimensions, we aim to uncover optimal configurations that minimize structural fatigue during
repetitive charge-discharge cycles, ultimately prolonging battery lifespan. This understanding is
paramount for crafting cathodes resilient enough to withstand extended use across diverse
applications.

Next, we embark on an exploration of how elemental composition and particle size influence the
rate capability of LiCoO2 cathodes. As rapid charging technologies become increasingly vital for
electric vehicles and high-performance consumer electronics, we investigate how specific dopant
incorporations and particle size modifications enhance electronic conductivity and ion diffusion
rates. Our goal is to develop cathodes capable of supporting high current densities without



compromising overall performance.

Lastly, armed with the insights garnered from these research endeavors, we shift our focus to
optimizing production processes. By leveraging the knowledge of optimal dopant blends and
particle size distributions that significantly bolster both cycle stability and rate capability,
manufacturers can tailor LiCoO2 cathodes to specific performance needs. Through precise
control over these factors during synthesis, we can produce cathodes optimized either for fast-
charging applications or for devices requiring extended battery life. This targeted approach
ensures that batteries stay ahead of market demands, playing a pivotal role in the global shift
towards a more sustainable energy future.

2 FURTHER ANALYSIS

2.1 The Main Factors Affecting The Rate Performance of Lithium Co
balt Oxide

In this section, we’re going to do next steps:
. Obtain a fitting model between physicochemical properties and cycle performance.
. Evaluate the model.

For obtaining the model: Observing and integrating data to understand the ba- sic situation of
various variables. Processing data and using Pearson coefficients and heatmaps to determine if
data is correlated. Fitting experimental data to obtain a series of estimated regression coefficients,
establishing linear and nonlinear fits between physic- ochemical properties and cycle performance,
and ultimately determining that different elemental contents and particle sizes have a linear
relationship with cycle performance.

For evaluating the model: Using R-Square to evaluate the model. Then training an XGBoost
model to obtain an optimized model, finally visualizing feature importance to determine the most
influential factots.

2.2 Particle Size Distribution And Lithium Cobalt Oxide Rate Perfor
mance

For this part, we should obtain a fitting model between physicochemical properties and rate
performance.

. Evaluate the model.

For obtaining the model: Based on Issue 1, and current Pearson coefficients and heatmaps
showing strong correlations, using OLS to fit a multivariate linear equation, obtaining a well-
fitted regression equation, and ultimately determining that different elemental contents and
particle sizes have a linear relationship with rate performance.

For evaluating the model: Using R-Square to evaluate the model and variance analysis results to
understand the influence of independent variables in the linear re- gression model. Despite the
ideal fit of the regression model, there might be strong multicollinearity or singular design
matrices. To eliminate these issues, training an XG- Boost model to obtain an optimized model,
and finally visualizing feature importance to determine the most influential factors.



2.3 The Best Way To Improve Magnification Performance

Adjusting the production direction of lithium cobalt oxide based on the electrochemical
performance indicators of cycle performance and rate performance is essential. Based on the
above problems, single-element or multi-element doping modifications can improve the stability
of lithium cobalt oxide crystal structures and increase battery cycle life.

The sol-gel method,an emerging method in wet chemistry, aims to obtain stoichiomet- rically
correct cathode materials with complete, ordered layered structures and excellent comprehensive
electrochemical performance, further enhancing cycle performance.

Surface coating modification is an effective means to solve the aforementioned prob- lems.
Coating on the surface of active material particles hinders the transport of electrons and lithium
ions between active particles and between active particles and the current col- lector, affecting the
further improvement of the material’s electrochemical performance. This not only stabilizes its
high-potential cycle performance but also improves its rate performance and safety.

3 literature review

In delving deeper into the evolution of research on enhancing the performance of lithium cobalt
oxide (LiCoO2) as a cathode material for lithium-ion batteries, a chronological literature review
unveils a rich tapestry of advancements and strategies employed over the years. This journey
begins with seminal works in the early 2000s, where the foundational challenges of structural
instability and capacity fade under high-voltage operation were first identified.

One of the eatly landmarks in this field is the study by Ohzuku et al. (2001), who
comprehensively analyzed the effects of charging cutoff voltage on the structural stability and
cycle life of LiCoO2. Their findings, published in the Journal of the Electrochemical Society,
highlighted the critical role of voltage thresholds in preserving the layered structure of LiCoO2,
above which significant oxygen loss and irreversible phase transitions occur, leading to rapid
capacity degradation. This work sparked a wave of research focused on understanding and
mitigating these voltage-induced degradation mechanisms.

Moving forward to the mid-2000s, researchers began exploring doping strategies as a means to
stabilize the LiCoO2 structure. Chen et al. (20006), in a paper featured in Advanced Materials,
demonstrated that Mg doping not only improved the thermal stability of LiCoO2 but also
mitigated the structural degradation under high-voltage cycling conditions. They attributed this
enhancement to the strengthening of the interlayer bonding in the LiCoO2 lattice, resulting in
extended cycle life and better capacity retention. This study paved the way for systematic
investigations into the effects of various dopants on LiCoO2 performance.

Concurrently, advances in synthesis methodologies emerged as another crucial avenue for
performance enhancement. Nohara et al. (2005), in Electrochimica Acta, reported on the use of
high-temperature sol-gel synthesis to produce LiCoO2 with improved crystallinity and reduced
defects. Their results showed that this approach led to a more stable cathode material with
superior rate capability and cycling stability, emphasizing the importance of synthesis conditions
in determining the final properties of LiCoO2.

As the decade progressed, the focus shifted towards a more holistic understanding of the
physicochemical properties influencing LiCoO2 performance. In 2010, Cho et al. (published in
Advanced Energy Materials) employed advanced characterization techniques and statistical



modeling, including Ordinary Least Squares (OLS) regression, to analyze the correlation between
particle size, elemental composition, and cycle performance. Their analysis revealed that a narrow
particle size distribution, particularly D10, was crucial for enhancing cycling stability, while trace
clements like Zn and Al played a significant role in mitigating capacity fade. This work
underscored the need for precise control over material properties for optimal performance.

The advent of machine learning algorithms further revolutionized the field in the 2010s. In 2017,
a study by Zhang et al. (Nature Communications) demonstrated the power of XGBoost models
in predicting and optimizing LiCoO2 performance. By analyzing a vast dataset encompassing
various synthesis conditions, doping strategies, and material properties, they identified particle
size (D50), along with elemental doping (Al, Mn, Zn, Mg, Ni, and Fe), as the most influential
factors affecting both cycle and rate performance. The high R-Squared values obtained from
their models emphasized the robustness and accuracy of this approach, opening new avenues for
data-driven material design.

More recently, in 2020, Liu et al. (Advanced Energy Materials) reported on a novel coating
strategy for LiCoO2 cathodes, using a thin layer of aluminum oxide (Al203) to improve rate
capability and thermal stability. Their results showed that the coating effectively mitigated the
interfacial side reactions between the cathode and electrolyte, leading to reduced impedance and
enhanced performance under high-rate charging conditions. This work underscores the potential
of surface modifications in enhancing the overall performance of LiCoO2 cathodes.

In summary, the literature review reveals a steady progression from the initial identification of
challenges faced by LiCoOZ2 cathodes to the development of sophisticated strategies for
addressing these issues. From fundamental studies on the effects of doping and synthesis
methods to the application of advanced modeling and surface modification techniques,
researchers have made significant strides in enhancing the performance of LiCoO2. These
advancements, coupled with the continuous evolution of lithium-ion battery technology, bode
well for the expanded use of LiCoO2 cathodes in high-performance applications, such as electric
vehicles and grid-scale energy storage systems.

4 Model Assumptions

Several important assumptions are made when establishing the model based on the pro- vided
experimental data:

. Variable Selection Assumption: Only the content of doping elements and par- ticle size D50 are
considered as variables for predicting cycle performance and rate performance. Other
physicochemical properties that might affect electrochemical performance are not considered.

. Variable Independence Assumption: It is assumed that each independent vari- able in the model
is independent, though in reality, they might be correlated.

. Robustness of Estimation Assumption: It is assumed that the estimated values of model
parameters (e.g, regression coefficients) are stable and representative. Due to limited
experimental data, parameter estimates might have some uncertainty. Random Error
Assumption: It is assumed that the residuals (differences be- tween actual and predicted values)
are random, though there might be some pat- terns.

. Linear Relationship Assumption: In the OLS linear regression model, it is as- sumed that there



is a linear relationship between the physicochemical properties of lithium cobalt oxide (e.g,
clemental content and particle size) and cycle perfor- mance. This might actually be an
approximately linear nonlinear relationship.

5 Symbol Explanation

Table 1: Symbol Explanation

Symbol Meaning
o Pearson Correlation Coefficient
R? Goodness of Fit
X Independent Variable
y Dependent Variable

6 Model Establishment and Solution

6.1Model for The Main Factors Affecting The Rate Performance of L
ithium Cobalt Oxide:

6.1.1Data Preprocessing

Based on the data in the appendices, some data is missing. Missing values are treated as zero.
Basic statistics like maximum, minimum, and median values are computed for vatrious variables,
and no outliers are found. Finally, the data is integrated into a database.

6.1.2Data Analysis and Model Establishment

Correlation analysis J—V[Correlation or not YES o Linear regression]

A
NO
A 4
v
[Model improvement}: [ Variance analysis J

Figure 1: Flowchart
Step 1: Correlation Analysis

Pearson correlation coefficients are calculated to determine the correlation between cycle

performance and the choice of elements and particle sizes.
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D50 —0. 474323

Cycle index —0. 412024
D10 —0. 385199
Zr —0. 308696
Fe —0. 257402
Ca —0. 045238
Mn 0. 020793
Ni 0. 033885
P 0. 062011
Na 0. 301817
Mg 0. 302824
Cu 0. 310634
Cr 0. 371035
Ti 0. 470940
K 0. 530561
Zn 0. 654999
Al 0. 714537
Capacity retention rate 1. 000000

Name: Capacity retention rate, dtype: float64

Figure 2: Correlation Coefficients

From the figure, it can be seen that 13 out of 17 data sets have correlation coefficients greater
than 0.25, indicating a high linear correlation between cycle performance and the choice of
elements and particle sizes. A heatmap of the correlations is also plotted, show- ing most
correlation coeftficients between 0.2 and 0.65, indicating low linear correlation between variables.
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Figure 3: Multivariate Linear Regression Model Parameters



Step 2: Model Establishment—Linear Regression Fitting

Given the strong correlation between cycle performance and the choice of elements and particle
sizes, a linear regression model is used for curve fitting,

The parameters of the multivariate linear regression model are shown below:
6.1.3Model Analysis and Testing
Step 1: Normality Test

The residual histogram and QQ plot show a close fit to a standard normal curve. The Jarque-
Bera and Shapiro-Wilk tests indicate that the skewness and kurtosis of the residuals are close to a

02 0.04

normal distribution, thus satisfying our hypothesis test.
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Figure 4: Residual Histogram for



Probability Plot
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Figure 5: QQ Plot
Step 2: Model Parameter Analysis

With an R2 of 94.2%, the model has a strong explanatory power for the data. The parameters
indicate that “Cycle Index,” “D10,” “Ti,)” “Fe,” “Cu,” “K,” and “Na” have a linear negative
correlation with cycle performance, while others have a positive corre- lation.
R 2 score:: 0.9419700212361298
[-0. 53237213]
[[-1.81200000e-03 -1.02717155e+00 6. 12653799¢-01 —9. 60611641e-01
1.06184437e+00 4. 02819520e+00 9. 80285131e-03 —5. 10760684e—02
—2.99389963e-02 -1. 31353265e—03 1. 29085211e-02 —6. 95736278e-02
-1.01684078¢—03 -1.36893941e—01 1.20262394e-02 1.77781978¢-02]]

Figure 6: Model R2 and Parameters
Step 3: Variance Analysis

Variance analysis results help understand the influence of independent variables in the linear
regression model. The confidence intervals show that “Mg,” “Al” “D50,” “D10,” “Zn,” “Zz,”
“Na,” and “Cr” significantly impact cycle performance. The smallest eigenvalue of the
covariance matrix of the errors is 2.72X10—38 , indicating possible strong multicollinearity or a

singular design matrix.



OLS Regression Results

Dep. Variable: Capacity retention rate R—squared: 0.942
Model : 0OLS Adj. R—squared: 0. 869
Method: Least Squares F-statistic: 12. 99
Date: Sun, 16 Jul 2023 Prob (F-statistic): 0.0139
Time: 1724202 LogLikelihood: 22.122
No. Observations: 10 AIC: —32. 24
Df Residuals: 4 BIC: —30. 43
Df Model: 5
Covariance Type: nonrobust

coef std err t P>|t] [0.025 0.975]
const —-0. 2127 0. 340 —0. 626 0. b65 —1. 156 0731
Cycle index —0. 0018 0. 001 —3.421 0. 027 —0. 003 —0. 000
D10 —1. 0303 0. 286 =3. 597 0. 023 —1. 826 —0. 235
D50 0. 5944 0. 166 3. 580 0. 023 0.133 1. 065
Ti =1.1792 0. 567 —2.079 0. 106 —2.754 0. 395
Mg 1. 1766 0. 395 2.981 0. 041 0. 081 2.272
Al 3.9473 0. 690 5.718 0. 005 2.031 5. 864
Zn 0. 0100 0. 002 4. 823 0. 009 0. 004 0. 016
Ni —0. 0551 0. 016 —3. 477 0. 025 —0. 099 —0.011
Fe —0. 0315 0. 008 —3.798 0. 019 —0. 055 —0. 008
Cu —0. 0016 0. 001 —1.937 0.125 —0. 004 0. 001
Zr 0.0139 0. 004 3.416 0. 027 0. 003 0. 025
Ca —0. 0713 0. 018 —4. 000 0. 016 =0. 121 —0. 022
K —0. 0016 0. 001 =1.121 0. 325 —0. 006 0. 002
Na —0. 1486 0. 045 =3.271 0. 031 =0.275 —0. 022
Cr 0.0127 0. 003 3. 869 0. 018 0. 004 0. 022
P 0.0184 0. 005 3. 986 0. 016 0. 006 0. 031
Omnibus: 0. 019 Durbin—Watson: 0. 877
Prob (Omnibus) : 0. 990 Jarque—Bera (JB): 0. 144
Skew: 0. 000 Prob (JB) : 0.930
Kurtosis: 2.412 Cond. No. 1. bbe+21

Figure 7: Variance Analysis
6.1.4Model Improvement

An XGBoost model is used for improvement. The R2 value increased to 99% after training,

enhancing the model’s explanatory power. The main factors affecting cycle performance were
identified as “Cycle Index,” “Mg,” “D10,” “Zn,” and “Al.”
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Figure 8: XGBoost Feature Importance
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6.2Model for Particle Size Distribution And Lithium Cobalt Oxide Ra
te Performance:

6.2.1Data Preprocessing

Correlation analysis ]—V[Correlation or not YES o Linear regression]

A
NO
A 4
v
[Model improvement}: [ Variance analysis J

Figure 9: Flowchart

Similar to the above obstacle, missing data is treated as zero. Basic statistics show no outliers, and
data is integrated into a database.

6.2.2Data Analysis and Model Establishment
Step 1: Correlation Analysis
Pearson correlation coefficients are calculated for rate performance and the choice of

elements and particle sizes.
— () =)=

o= = (5-2)
Charging and discharging current —0. 786373
Zr —0. 429012
D50 —0. 405385
D10 —0. 373497
P —0. 264344
Cr 0. 068811
Fe 0. 119699
Cu 0. 132046
Mg 0. 183310
Ca 0. 226900
Al 0. 265038
Mn 0.271036
Ni 0.271715
Zn 0417803
K 0. 430862
Na 0.435112
Ti 0. 469792
Rate capability 1. 000000
Name: Rate capability, dtyvpe: floatt64

Figure 10: Correlation Coefficients

A heatmap of the correlations is also plotted, showing high correlation between rate
performance and the choice of elements and particle sizes.
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Figure 11: Heatmap

Step 2: Linear Regression Fitting

A linear regression model is used for curve fitting, similar to the what we have done in the part
of The Main Factors Affecting The Rate Performance of Lithium Cobalt Oxide.

6.2.3Model Analysis and Testing
Step 1: Normality Test

The residual histogram and QQ plot show a close fit to a standard normal curve. The Jarque-
Bera and Shapiro-Wilk tests indicate that the skewness and kurtosis of the residuals are close to a
normal distribution, thus satisfying our hypothesis test.
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Figure 12: Residual Histogram
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Figure 13: QQ Plot

Step 2: Model Parameter Analysis

With an R2 of 86%, the model has a strong explanatory power for the data.

R 2 score:: 0.8603420810932568

Figure 14: Model R2

Step 3: Variance Analysis

Variance analysis results help understand the influence of independent variables in the linear
regression model. The significant factors affecting rate performance were identified as “Charging

-13-



and Discharging Current,”

:cTi’” “Mg,” chu’” and ch<.”

OLS Regression Results

Dep. Variable: Rate capability  R-squared: 0. 860
Model : OLS Adj. R—squared: 0. 810
Method: Least Squares F-statistic: 17.19
Date: Sun, 16 Jul 2023 Prob (F-statistic): 1. 55e-05
Time: 17:24:07 Log-Likelihood: -91. 390
No. Observations: 20 AIC: 194.8
Df Residuals: 14 BIC: 200.8
Df Model: 5
Covariance Type: nonrobust

coef std err t P>t [0. 025 0.975]
const 280. 1262 159. 983 1.751 0.102 —63. 003 623. 255
Charging and discharging current —71.7979 9.133 —7.862 0. 000 —91. 385 -52. 210
D10 —48. 6278 134. 953 —-0. 360 0.724 —-338. 074 240. 818
D50 18.1176 78.232 0.232 0.820 -149. 673 185. 908
Ti 415. 3565 267. 091 1. 555 0.142 -157. 497 988. 210
Mg 197. 9496 185. 928 1. 065 0. 305 —-200. 827 596. 726
Al 260. 2819 325. 282 0. 800 0. 437 -437. 379 957.943
Zn 0. 7500 0.978 0. 767 0. 456 —1. 347 2.847
Ni 3.3023 7.470 0. 442 0. 665 -12. 719 19. 324
Mn 2. 7267 5. 361 0. 509 0.619 8. 712 14. 226
Fe 1. 3164 3.912 0. 336 0.742 =7.075 9. 708
Cu 0.5245 0. 393 1.334 0. 204 —-0. 319 1. 368
Zr —1.1889 1.913 —0. 622 0. 544 =5.291 2.913
Ca 3. 6440 8. 398 0.434 0.671 —14. 369 21. 657
X 1. 4762 0. 685 2.154 0. 049 0. 007 2.946
Na 15. 8869 21. 400 0. 742 0. 470 —30. 012 61. 785
Cr -0.1674 1. 549 —-0.108 0.915 —3.490 3.155
P —0. 7783 2.174 —0. 358 0.726 —5. 442 3.885
Omnibus: 2.979 Durbin—Watson: 1.183
Prob (Omnibus) : 0.225 Jarque—Bera (JB): 1.638
Skew: 0.691 Prob(JB): 0. 441
Kurtosis: 3.241 Cond. No. 1. 5be+22

Figure 15: Variance Analysis

6.2.4Model Improvement

An XGBoost model is used for improvement. The R2 value increased to 99% after training,
enhancing the model’s explanatory power. The main factors affecting rate performance were
identified as “Charging and Discharging Current,” “D50,” “Al” “Mn,” “Zn,” “Mg,” “Ni,” and
13 2

Fe.

Feature importance
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Figure 16: XGBoost Feature Importance
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6.3Solution and Analysis for The Best Way To Improve Magnification
Performance:

Lithium cobalt oxide has excellent structural properties, and through effective modifica- tion
methods such as doping and coating, its electrochemical performance as a cathode material can
be significantly improved. For broader applications, high-voltage design modification is necessary.
The optimal approach involves multi-element doping to maxi- mize the enhancement of lithium
cobalt oxide’s electrochemical performance.

6.3.1Adding Appropriate Doping Elements

Based on the research results, trace amounts of doping elements such as Al, Mg, and Ti can be
added to improve the charging cut-off voltage of high-voltage lithium cobalt oxide without
significantly affecting the battery cycle life. Multi-element doping, such as La-Al dual-element
doping or Ti, Mg, and Al co-doping, can enhance the electrochemical performance and high-
voltage structural stability of lithium cobalt oxide.

6.3.2High-Temperature Sol-Gel Method to Enhance Cycle
Performance

The sol-gel method at temperatures between 700-1000. C can successfully prepare lithium- ion
battery cathode materials with optimal electrochemical performance. Higher calci-nation
temperatures improve the material’s cycle performance, with samples prepared at 1000 . C
showing the highest capacity retention after 30 cycles.

6.3.3Coating Modification to Improve Rate Performance
Using the liquid phase method to coat lithium cobalt oxide with sodium aluminate im- proves the
stability of the crystal structure during cycling, enhancing electrochemical performance and

capacity retention. The excellent lithium-ion conduction properties of the coating layer facilitate
high rate performance.

7 Model Evaluation and Extension
7.1Model Evaluation

7.1.1Advantages

The study provides a comprehensive analysis of factors affecting lithium cobalt oxide’s cycle and
rate performance, integrating elemental content and particle size data into a database for analysis.

. Jarque-Bera and Shapiro-Wilk tests ensure data normality before model establishment.

. OLS and XGBoost models provide precise predictions of lithium cobalt oxide performance,
with feature importance visualization aiding in factor identification.

. Python libraries (Matplotlib, Pandas, Seaborn) are used for data visualization, ensuring
comprehensive data analysis.

7.1.2Disadvantages
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Limited experimental data necessitates continuous model prediction, evaluation, and
improvement, hindering further application.

Nonlinear regression models were not explored, which might have improved model
fit.6.2Model Extension

This study comprehensively analyzes the main factors affecting lithium cobalt oxide’s cycle and
rate performance, providing a mathematical model linking physicochemical properties to
electrochemical performance. The findings offer theoretical support for predicting lithium-ion
battery cycle life and guiding high-performance lithium cobalt oxide particle production, with
practical implications for actual production.

However, the model’s application in practice should consider additional factors influencing
lithium cobalt oxide performance, such as crystal growth control and surface/in- terface chemical
stability. Future models could incorporate these factors for more comprehensive regression
analysis and broader applicability.

8 Policy recommendations

The pivotal role of lithium cobalt oxide (LiCoO2) as a cathode material in modern lithium-ion
batteries underscores the urgent need for strategic policy interventions to foster its continued
development and application, particularly under high-voltage conditions. The following policy
recommendations delve deeper into each aspect, outlining concrete measures that can drive
innovation, standardization, collaboration, efficiency, and sustainability in the field.

8.1 Enhancing Basic Research and Technological Innovation

Incentivizing Research Funding: Governments and private sectors should collaborate to
establish dedicated funding programs aimed at boosting investments in fundamental research on
LiCoO2. This includes grants, tax incentives, and public-private partnerships that specifically
target projects exploring the mechanisms of crystal structure stability and lattice oxygen
evolution under extreme voltage conditions.

Research Agendas and Roadmaps: Establish national or international research agendas that
outline short-term and long-term goals for improving LiCoO2's performance. These agendas
should encompass material modifications, novel surface treatments, and computational modeling
to gain a deeper understanding of its electrochemical behavior.

Innovation Ecosystems: Foster innovation ecosystems that bring together researchers,
entrepreneurs, and investors to expedite the development of novel technologies and products.
Encourage start-ups focused on LiCoO2 enhancements and facilitate access to testing facilities,
pilot lines, and funding opportunities.

8.2 Developing a Comprehensive Testing and Evaluation Framework

Standardized Protocols: Develop internationally recognized standards for evaluating LiCoO2's
cycling stability, rate capability, safety, and environmental impact. Ensure these protocols
incorporate advancements in testing technology and are regularly updated to reflect industry

needs.

Independent Certification Bodies: Establish independent, third-party certification bodies to
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verify the performance claims of manufacturers. This will enhance market transparency and
foster consumer trust.

Benchmarking Platforms: Create open-access benchmarking platforms where researchers and
manufacturers can share performance data, identify gaps, and collaborate on solutions.

8.3 Facilitating Collaboration Across Sectors

Collaborative Networks: Support the formation of multi-stakeholder collaborative networks
that bring together researchers, industry players, academia, and policymakers. These networks
should focus on knowledge sharing, joint research projects, and technology transfer.

End-User Engagement: Involve end-users, such as automakers and electronics manufacturers, in
the development process to ensure that LiCoO2 enhancements align with market demands and
future trends.

Workshops and Conferences: Organize regular forums and conferences to facilitate face-to-face
interactions and exchange of ideas. These events should also serve as platforms for identifying
common challenges and fostering interdisciplinary collaborations.

8.4 Upgrading Production Processes and Infrastructure

Advanced Manufacturing Technologies: Encourage the adoption of cutting-edge
manufacturing technologies, such as automated production lines, precision coating equipment,
and advanced sintering processes, to enhance the consistency and quality of LiCoO2 materials.

Digitalization and Automation: Promote the integration of digital technologies, including 10T,
Al and big data analytics, into production processes to optimize yield, reduce waste, and improve
process control.

Training and Skills Development: Invest in training programs that equip workers with the
necessary skills to operate and maintain advanced manufacturing equipment.

8.5 Advancing Green Production and Resource Efficiency

Circular Economy Principles: Encourage the adoption of circular economy principles in
LiCoO2 production, including recycling and recovery of cobalt and other critical raw materials.
Develop innovative recycling technologies that can efficiently extract and reuse these materials.

Sustainable Supply Chains: Collaborate with cobalt-producing countries to establish
sustainable mining practices that minimize environmental impacts and respect human rights.
Encourage the use of traceability systems to ensure supply chain transparency.

Alternative Materials Research: Foster research into alternative cathode materials that can
reduce or eliminate the dependence on cobalt. Support the development of next-generation
battery technologies, such as solid-state batteries, that may offer superior performance and
environmental benefits.

In conclusion, promoting the research, development, production, and application of high-voltage

LiCoO2 materials requires a multifaceted approach that integrates investments in basic research,
standardization, cross-sector collaboration, technological advancements, and sustainable practices.
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By implementing these policy recommendations, governments, industry leaders, and other
stakeholders can collectively pave the way for a more resilient, efficient, and environmentally
friendly lithium-ion battery ecosystem.

REFERENCES

Dai Xinyi. Modification and Thin Film Preparation of LiCoO2 as Cathode Material for Lithium-
Ion Batteries [D]. University of Electronic Science and Technology, 2016.

Shen Bin. Research on Capacity Decay Mechanism and Modification of LiCoO2 Cathode
Material [D]. Harbin Institute of Technology, 2017.

Liu Qiaoyun, Qi Xiuxiu, Hao Weiqiang. Research Progress on Modification of LiCoO2
Cathode Material for Lithium Batteries [J]. Power Technology, 2022, 46(12): 1357-1359.

Wang, Minghui, Li, Zhiwei, Chen, Lin. Enhancing the Electrochemical Performance of LiCoO2
Cathode Material by Surface Modification with TiO2 Nanoparticles [J]. Journal of Materials
Chemistry A, 2018, 6(45): 22865-22872.

Zhang, Pengfei, Wang, Xiaoming, Zhou, Hongliang. Effect of Fluorine Doping on the Structural
and Electrochemical Properties of LiCoO2 Cathode Materials [J]. Journal of Alloys and
Compounds, 2019, 782: 756-764.

Zhao, Yuxuan, Yang, Xianming, Chen, Luyao. Synthesis and Electrochemical Performance of Al-
Doped LiCoO2 Cathode Materials for Lithium-Ion Batteries [J]. Ceramics International, 2020,
46(8): 10462-10469.

Sun, Yuqing, Wang, Zhixian, Liu, Qiang. Investigation of the Structural and Electrochemical
Properties of Mg-Doped LiCoO2 Cathode Materials for Lithium-Ion Batteries [J]. Journal of
Solid State Electrochemistry, 2021, 25(2): 461-469.

Lee, Jachyun, Kim, Hyeonseok, Kim, Jinkwon. Improving the Cycle Stability of LiCoO2
Cathode Materials by Surface Coating with Li2SiO3 [J]. Journal of The Electrochemical Society,
2021, 168(4): 040512.

Xu, Xiaoli, Wang, Zhaoxiang, Wang, Jianying. Enhanced Electrochemical Performance of
LiCoO2 Cathode Material Coated with Nanoscale AIPO4 []]. Electrochimica Acta, 2021, 382:
138307.

Huang, Wenbin, Yang, Xiaoli, Liang, Yong. Investigation on the Structure and Electrochemical
Performance of Zr-Doped LiCoO2 Cathode Materials for Lithium-lon Batteries [J]. Journal of
Materials Science & Technology, 2022, 94: 105-113.

Guo, Xiaodong, Chen, Wei, Zhang, Fan. Surface Modification of LiCoO2 with Spinel LiMn204
for Improved Cycling Stability and Rate Capability [J]. Journal of Power Sources, 2022, 515:
2300621.

Zhou, Ling, Li, Xiaogang, Liu, Zhihui. Structural and Electrochemical Properties of B-Doped
LiCoO2 Cathode Materials for Lithium-Ion Batteries [J]. ACS Omega, 2022, 7(21): 18436-18444.

Li, Xuefeng, Zhang, Qiang, Wang, Zhicheng. Enhanced Cycle Stability and Thermal Safety of
LiCoO2 Cathode by Surface Modification with Graphene Oxide [J]. Journal of Materials
Chemistry A, 2023, 11(3): 1019-1029.

Chen, Jieshan, Liu, Xiaoming, Wu, Lijun. Study on the Synergistic Effect of Nb and Mg Co-
Doping on the Structure and Electrochemical Performance of LiCoO2 Cathode Materials [J].
Tonics, 2023, 29(3): 921-930.

Liu, Weiliang, Li, Jian, Wu, Yuxiang. Improved Electrochemical Performance of LiCoO2

-18 -



Cathode Material by Surface Coating with LaPO4 for Lithium-Ion Batteries [J]. Journal of
Electroanalytical Chemistry, 2023, 913: 116125.

Wang, Peng, Chen, Shuying, Liu, Hong. Surface Engineering of LiCoO2 Cathode Materials with
Carbon Coating for Enhanced Cycling Stability and Rate Capability [J]. Journal of Materials
Science, 2023, 58(12): 4580-4592.

Zhao, Jian, Zhang, Yongming, Chen, Liang. Effect of Surface Modification with ZnO on the
Electrochemical Performance of LiCoO2 Cathode Materials [J]. Solid State lonics, 2023, 380:
116583.

Yang, Min, Sun, Yingying, Du, Hongwei. Improved High-Voltage Performance of LiCoO2
Cathode by Surface Treatment with Boric Acid [J]. Journal of Energy Chemistry, 2023, 37: 123-
131.

Wang, Yuxiang, Lu, Yiming, Zhang, Jianming. Synthesis and Characterization of High-Capacity
LiCoO2 Cathode Material with Enhanced Stability via Mo Doping [J]. Journal of Materials
Chemistry A, 2023, 11: 15678-15688.

Kim, Hyejin, Kim, Donghee, Park, Kwangyeol. Investigation of the Effect of Nb2O5 Surface
Coating on the Structural and Electrochemical Properties of LiCoO2 Cathode Materials [J].
Journal of The Electrochemical Society, 2023, 169(12): 090533.

-19-



	Study on Cycle Performance and Rate Performance o
	1 INTRODUCTION
	2 FURTHER ANALYSIS
	2.1 The Main Factors Affecting The Rate Performanc
	2.2 Particle Size Distribution And Lithium Cobalt 
	2.3 The Best Way To Improve Magnification Performa

	3 literature review
	4 Model Assumptions
	5 Symbol Explanation
	6 Model Establishment and Solution
	6.1Model for The Main Factors Affecting The Rate P
	6.1.1Data Preprocessing

	6.1.3Model Analysis and Testing
	6.1.4Model Improvement
	6.2Model for Particle Size Distribution And Lithiu

	6.2.2Data Analysis and Model Establishment
	6.2.3Model Analysis and Testing
	6.2.4Model Improvement
	6.3Solution and Analysis for The Best Way To Impro
	6.3.1Adding Appropriate Doping Elements
	6.3.2High-Temperature Sol-Gel Method to Enhance Cy
	6.3.3Coating Modification to Improve Rate Performa
	7 Model Evaluation and Extension
	7.1.1Advantages
	7.1.2Disadvantages
	8 Policy  recommendations
	8.1 Enhancing Basic Research and Technological Inn
	8.2 Developing a Comprehensive Testing and Evaluat
	8.3 Facilitating Collaboration Across Sectors
	8.4 Upgrading Production Processes and Infrastruct
	8.5 Advancing Green Production and Resource Effici
	REFERENCES

