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Abstract

With the in-depth study of intestinal flora, it is found that the changes of its structure and function
are closely related to the occurrence of diseases.Edible fungi are natural resources, and
polysaccharides are the main active components. The research found that most of the mushroom
polysaccharides want to be used by the human body, they need to be fermented by the intestinal
flora first. In this paper, we summarize the research on the improvement of host capacity of
mushroom polysaccharides in recent years, so that we can have a deeper understanding of the
interaction between mushroom polysaccharides and intestinal flora.
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Chapter 1 Preface
Among approximately 15,000 species of fungi distributed worldwide, around 2,000 are edible. In
China, there is a long-standing tradition of culinary and medicinal use, with over 1,000 species of
edible fungi documented, which has drawn significant attention to these organisms [1].

1.1 Overview of Edible Fungal Polysaccharides

Edible fungi serve as both food and medicine, possessing unique aroma and taste, and contain
various pharmacological activities with almost no toxic side effects [2]. They are low in fat and
calories but rich in health-beneficial polyunsaturated fatty acids [3], proteins, polysaccharides,
polyphenols, terpenoids, amino acids, sterols, nucleosides, and other nutritional and bioactive
components [4]. Additionally, edible fungi produce secondary metabolites with a range of
beneficial properties. These bioactive secondary metabolites or nutrients are increasingly being
extracted, encapsulated, or compressed into tablets as functional dietary supplements or
modulators [5]. Regular intake of these supplements can enhance immune function, thereby
improving disease resistance and promoting faster recovery. They exhibit various health benefits,
including antioxidant, antibacterial, anti-inflammatory, hypoglycemic, antitumor,
immunomodulatory, and neuroregulatory effects [6–10].



Polysaccharides are widely distributed in nature and possess diverse biological activities. They
serve as important regulators with physiological functions such as immunomodulation [11–13],
anticancer effects [14–16], anti-inflammatory properties [17], antioxidant activity [18, 19], and
hypoglycemic effects [20, 21].

1.2 Fermentation Characteristics of Edible Fungal Polysaccharides

For most edible fungal polysaccharides to be utilized by the human body, they must first undergo
fermentation by gut microbiota, and the resulting metabolites exert various physiological
functions [22]. Gut microbiota secrete different enzymes to ferment polysaccharides, producing
short-chain fatty acids (SCFAs), including formic acid, acetic acid, propionic acid, and butyric
acid, which lower intestinal pH, inhibit the proliferation of harmful bacteria, and enhance
intestinal mucosal immunity [23]. In turn, polysaccharides can improve intestinal integrity,
alleviate mucosal damage, increase SCFA production, reduce metabolic endotoxins, downregulate
inflammatory factors, and upregulate tight junction protein expression [24].

For example, polyglucose, polygalactose, and polymannose—composed of glucose, galactose,
and mannose—can be fermented by gut microbiota to generate SCFAs, thereby promoting the
proliferation of beneficial bacteria and inhibiting the growth of harmful bacteria [25, 26].

Chapter 2 Regulatory Effects of Different Edible Fungal

Polysaccharides

2.1 Pleurotus eryngii Polysaccharides

2.1.1 Overview of Pleurotus eryngii

Pleurotus eryngii, also known as king trumpet mushroom, belongs to the phylum Basidiomycota,
class Agaricomycetes, order Agaricales, family Pleurotaceae, and genus Pleurotus. It is widely
cultivated in many countries across Southern Europe, North Africa, and Central Asia, and is
primarily distributed in China's Zhejiang, Jiangsu, Sichuan, Qinghai, and Taiwan provinces.
Pleurotus eryngii possesses a unique aroma reminiscent of almonds and abalone, with tender
flesh and rich nutritional value. Modern pharmacological and nutritional studies have
demonstrated that it exhibits various bioactive properties, including antioxidant, antitumor,
immunomodulatory, antihypertensive, and cholesterol-regulating effects [27–35].

2.1.2 Interaction Between Pleurotus eryngii Polysaccharides and Gut Microbiota

In a study by Wei Hua et al. [36] on the lipid-lowering effects of Pleurotus eryngii mycelium
solid-fermented polysaccharides and their impact on gut microbiota, it was found that these
polysaccharides could restore gut microbiota dysbiosis induced by a high-fat diet. Specifically,



they significantly promoted the growth of Lactobacillus (a core gut microbiota and important
probiotic in traditional research) within the Firmicutes phylum while inhibiting Staphylococcus
and Aerococcus (Firmicutes) as well as Corynebacterium (Actinobacteria). Additionally, they
enhanced the abundance of Bacteroides (Bacteroidetes), Firmicutes, and Actinobacteria while
suppressing certain Firmicutes populations. Furthermore, Pleurotus eryngii polysaccharides
improved the dysregulated carbohydrate and amino acid transport and metabolism functions in
gut microbiota caused by a high-fat diet, restoring a balanced state where carbohydrate
metabolism regained dominance.

In another study by Ma Gaoxing et al. [37] on the intestinal effects and mechanisms of Pleurotus
eryngii polysaccharides, intake of these polysaccharides significantly increased the concentrations
of acetic acid, propionic acid, isobutyric acid, n-butyric acid, and isovaleric acid in the cecum of
mice, as well as isovaleric acid and n-valeric acid in the colon. Moreover, Pleurotus eryngii
polysaccharides reduced intestinal pH, increased water content, and improved fecal volume,
thereby promoting intestinal health. At the phylum, class, order, and family levels, these
polysaccharides altered the diversity of fecal microbiota:

At the phylum level, Firmicutes abundance decreased significantly, while Bacteroidetes increased.
At the class level, Bacteroidia and Bacilli abundances rose, whereas Clostridia declined.
At the order level, abundances of Bacteroidales and Lactobacillales increased, while Clostridiales
decreased.
At the family level, Porphyromonadaceae, Rikenellaceae, Bacteroidaceae, and Lactobacillaceae
populations expanded significantly.

These modifications enhanced immune function and improved intestinal health.

2.2 Hericium erinaceus Polysaccharides

2.2.1 Overview of Hericium erinaceus

Hericium erinaceus, commonly known as lion's mane mushroom, belongs to the Fungi kingdom,
Hericiaceae family, and Hericium genus. This fungus has several subspecies, such as Hericium
caput-medusae and Hericium laciniatum. It is widely distributed throughout the Northern
Hemisphere, including Europe, Asia, and North America. In China, it is primarily found in the
broad-leaved and coniferous forests of Northeast China, the Lesser Khingan Mountains, and the
Northwest and Southwest regions. Hericium erinaceus is known for its various health benefits,
including cholesterol reduction, immune enhancement, gastrointestinal protection, anticancer
properties, and anti-aging effects [38–46].

2.2.2 Interaction Between Hericium erinaceus Polysaccharides and Gut
Microbiota



In a study by Yang Yang et al. [47] on the improvement of gut microbiota and immune function
by Hericium erinaceus polysaccharides, treatment with these polysaccharides led to an increase in
the abundance of Firmicutes and a decrease in Bacteroidetes. Additionally, the abundances of
Verrucomicrobia and Proteobacteria also increased. During the fermentation of polysaccharides,
short-chain fatty acids (SCFAs) such as acetic acid, isovaleric acid, lactic acid, and butyric acid
were produced. This indicates that gut microbiota can further utilize Hericium erinaceus
polysaccharides through fermentation, generating SCFAs that help maintain and improve host
functions and intestinal health.

In another study by Baoming Tian et al. [48], it was found that after fermentation by gut
microbiota, Hericium erinaceus polysaccharides significantly increased the levels of SCFAs,
including acetic acid and propionic acid, leading to changes in pH that benefit overall health.
Additionally, the relative abundances of Firmicutes, Bacteroidetes, and Actinobacteria increased,
while that of Proteobacteria decreased. Furthermore, the relative abundances of
SCFA-producing bacteria, such as Bifidobacterium, Faecalibacterium, Blautia, Butyricicoccus, and
Lactobacillus, were enhanced. In contrast, the relative abundances of pathogenic bacteria,
including Escherichia-Shigella, Klebsiella, and Enterobacter, were reduced. These changes
promote intestinal digestion, alleviate gastrointestinal discomfort, and enhance human health.

2.3 Ganoderma lucidum Polysaccharides

2.3.1 Overview of Ganoderma lucidum

Ganoderma lucidum, belonging to the Basidiomycetes class, Polyporaceae family, and
Ganoderma genus, is renowned as the "divine mushroom" and "herb of immortality" in
traditional Chinese culture. There are currently 100 species of Ganoderma fungi recorded in
China, with 69 species classified under the Ganoderma genus. With a medicinal history spanning
over 2,000 years in China, Ganoderma lucidum is celebrated for its ability to strengthen vital
energy, nourish the body, and promote longevity [49–53].

2.3.2 Interaction Between Ganoderma lucidum Polysaccharides and Gut
Microbiota

In a study by Ding Qiao et al. [54], intake of black Ganoderma lucidum polysaccharides was
found to significantly increase the levels of acetic acid, propionic acid, n-butyric acid, and total
SCFAs. It also notably enhanced metabolic pathways related to carbohydrate metabolism and
absorption, mineral absorption, and polysaccharide synthesis and metabolism. Additionally, it
increased the abundance of Bifidobacterium while decreasing Enterococcus. Through in vivo
fermentation producing SCFAs and lowering intestinal pH, along with modulating the
composition of gut microbiota and key bacterial genera, these polysaccharides further exerted
beneficial effects on diabetic rats.



In research by Chen et al. [55], Ganoderma lucidum polysaccharide intake reduced the
abundances of Aerococcus, Ruminococcus, Corynebacterium, and Proteobacteria, while
increasing levels of Blautia, Dehalobacterium, Parabacteroides, and Bacteroides. This restored
disrupted metabolic functions in rat gut bacterial communities, including amino acid metabolism,
carbohydrate metabolism, inflammatory substance metabolism, and nucleic acid metabolism.

Chang et al. [56] demonstrated that Ganoderma lucidum polysaccharide consumption decreased
the Firmicutes-to-Bacteroidetes ratio and reduced levels of endotoxin-containing Proteobacteria,
thereby alleviating inflammation and insulin resistance. It also maintained intestinal barrier
integrity and diminished metabolic endotoxemia.

2.4 Flammulina velutipes Polysaccharides

2.4.1 Overview of Flammulina velutipes

Flammulina velutipes, commonly known as golden needle mushroom or enoki mushroom, is
characterized by its golden-yellow color and slender, needle-like stipe. Taxonomically, it belongs
to the phylum Basidiomycota, subphylum Agaricomycotina, class Agaricomycetes, order
Agaricales, and family Physalacriaceae. This edible fungus possesses various health benefits
including antioxidant and anti-aging effects, immune enhancement, and lipid-lowering properties
[57-60].

2.4.2 Interaction Between Flammulina velutipes Polysaccharides and Gut
Microbiota

In the study by Su Anxiang et al. [61], Flammulina velutipes polysaccharides were found to
modulate gut microbiota structure through multiple mechanisms:

At the phylum level: Increased abundance of Bacteroidetes and Actinobacteria while decreasing
Firmicutes and Proteobacteria
At the family level: Significantly elevated Bifidobacteriaceae and Bacteroidaceae while reducing
Enterobacteriaceae
At the genus level: Enhanced Bifidobacterium, Bacteroides, and Clostridium populations while
suppressing Escherichia-Shigella

The polysaccharides promoted production of short-chain fatty acids (SCFAs) including acetic
acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid, consequently
lowering the fermentation system's pH and influencing microbial metabolism. Notably, the
affected bacterial genera demonstrated neurological relevance:
Bifidobacterium, Bacteroides and Butyricimonas influenced N-acetylaspartate (NAA) levels in
brain tissue - a marker of neuronal health
Ruminococcus showed correlation with brain NAA levels
Butyricimonas produced butyrate with anti-inflammatory and gut-protective effects



These findings suggest Flammulina velutipes polysaccharides may regulate the nervous system
through gut microbiota interactions, showing potential for improving neurodegenerative
conditions.

In Qiongxin Liang et al.'s research [62], the polysaccharides increased microbial diversity and
improved community structure by:

Reducing Firmicutes abundance

Increasing Bacteroidetes proportion
Elevating acetic, propionic and butyric acid levels
This modulation of SCFA production helped regulate inflammatory cytokines, potentially
reducing intestinal inflammation and tumorigenesis while promoting gut homeostasis.

2.5 Cordyceps sinensis Polysaccharides

2.5.1 Overview of Cordyceps sinensis

Cordyceps sinensis is a complex consisting of the larval corpse of insects from the Hepialidae
family (Lepidoptera) parasitized by the fungus Ophiocordyceps sinensis (family Clavicipitaceae).
Modern research has proven that Cordyceps sinensis provides significant health benefits to the
body's circulatory system, immune system, hematopoietic system, cardiovascular system,
respiratory system, and glandular system. It possesses various bioactive properties including
immune enhancement and regulation, anti-aging, antitumor, antibacterial, and antioxidant
activities [63-67].

2.5.2 Interaction Between Cordyceps sinensis Polysaccharides and Gut
Microbiota

In the study by Chen Shuping et al. [68], the relative abundances of Dehalobacterium,
Coprococcus, Oscillospira, and Desulfovibrio in the intestines of mice treated with natural
Cordyceps sinensis polysaccharides significantly increased, while the relative abundance of
Bilophila decreased. The treatment also elevated the levels of acetic acid, propionic acid, butyric
acid, and valeric acid in the cecum of colitis mice. These effects alleviated colitis by enhancing
the intestinal barrier, increasing SCFA levels, inhibiting the activation of the NF-κB inflammatory
pathway, and regulating gut microbiota dysbiosis.

In the study by Mengxi Ying et al. [69], Cordyceps sinensis polysaccharides improved the
diversity of the gut microbial community and modulated the overall structure of the gut
microbiota in cyclophosphamide-induced mice with intestinal mucosal immunosuppression and
microbial dysbiosis. The treatment increased the abundance of beneficial bacteria (Lactobacillus,
Bifidobacterium, Bacteroides) and reduced the abundance of pathogenic bacteria (Clostridium).
Additionally, acetic acid and butyric acid were the two SCFAs most significantly elevated by
Cordyceps sinensis polysaccharides. These findings confirm the potential of Cordyceps sinensis



polysaccharides as a prebiotic to restore gut microbiota by improving microbial community
diversity, regulating microbial structure and composition, and correcting dysbiosis. The treatment
also mitigated the side effects of cyclophosphamide-induced intestinal mucosal
immunosuppression and microbial imbalance on gut mucosal immunity and microbiota.

2.6 Silver Ear Polysaccharides

2.6.1 Brief Introduction to Tremella Fuciformis
Tremella fuciformis, also known as snow ear or white wood ear, is the fruiting body of Tremella
fuciformis fungi in the Basidiomycota phylum and is hailed as the king of fungi. Traditional
Chinese medicine holds that Tremella fuciformis has the medicinal effects of nourishing Yin,
moistening the lungs, and beautifying the complexion [70-78].

2.6.2 Interaction between Tremella fuciformis polysaccharides and intestinal
flora

In the study of Gang He[79] et al., it was found that feeding tremella fuciformis polysaccharides
improved the intestinal flora, mainly by increasing diversity. The relative abundance of the
Thick-walled bacteria phylum increased significantly, while that of the Bacteroidetes phylum
decreased significantly, resulting in a significant increase in the ratio of thick-walled bacteria
phylum to Bacteroidetes phylum. The intervention of Tremella fuciformis polysaccharides
reversed the changes in the intestinal flora, especially the microorganisms related to obesity, such
as Muribaculaceae, Lachnospiraceae, Alistipes, Bilophila and Desulfovibrio. After feeding
Tremella fuciformis polysaccharides, the contents of acetic acid, propionic acid and butyric acid
increased significantly, while the content of valeric acid did not change significantly. In addition,
the intervention of Tremella fuciformis polysaccharides also affected the changes in BCFAs
content, mainly manifested as a significant increase in isobutyric acid content, while there was no
significant change in isovaleric acid content. This reversed the imbalance of intestinal flora and
reduced the weight gain, fat accumulation, inflammation, hyperglycemia and hyperlipidemia in
mice caused by a high-fat diet.
In the study of Lingna Xie[80] et al., it was found that feeding Tremella fuciformis
polysaccharide allogeneic bacteria and Prevotellaceae-UCG-001 significantly increased, while the
intestinal flora AD3011_group and Clostridia_UCG-014 in mice significantly decreased. It
indicates that the treatment with Tremella fuciformis polysaccharides in mice significantly
regulates the composition of the intestinal microbiota and restores the reduction in the levels of
acetate, propionate, butyrate, isobutyrate, valerate and isovaleric acid. These findings suggest that
the regulation of SCFAs derived from intestinal microbiota by tremella fuciformis
polysaccharides may help alleviate dermatitis.

Chapter 3 Conclusions and Prospects



Most polysaccharides from edible fungi need to be digested by the intestinal flora before they can
be utilized by the human body. With the development of human society, people are paying more
and more attention to health. Edible fungi, as a natural resource, are both food and medicine.
They have a unique aroma and taste, and contain various pharmacological activities with almost
no toxic side effects. Edible fungi have a low fat content and low calories, and are rich in
nutrients and active components beneficial to health, such as polyunsaturated fatty acids, proteins,
polysaccharides, polyphenols, terpenoids, amino acids, sterols, and nucleosides. In addition, edible
fungi contain secondary metabolites, which possess a series of beneficial properties. The
bioactive secondary metabolites or nutrients produced by these are increasingly being extracted
and encapsulated or taken into tablets as functional dietary supplements or regulators. Regular
intake of these supplements can enhance the body's immune function, thereby strengthening the
body's resistance to diseases and facilitating a faster recovery. It is precisely for these reasons that
it has received extensive attention from researchers. People have begun to notice the regulatory
role of edible fungus polysaccharides in our bodies and the ways and methods of their effects.
Through continuous exploration, the significant regulatory role of edible fungus polysaccharides
in human body functions and diseases has been discovered, laying a solid foundation for the
future use of edible fungus polysaccharides as drugs to treat diseases in our bodies.
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