Input keywords, title, abstract, author, affiliation etc..
Journal Article An open access journal
Journal Article

The Molecular Mechanisms Underlying IgA Nephropathy: Pathogenesis and Potential Therapeutic Targets

by Weifeng Wu 1,*
1
Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou, China
*
Author to whom correspondence should be addressed.
Received: / Accepted: / Published Online: 31 August 2024

Abstract

IgA nephropathy (IgAN), also known as Berger’s disease, is a primary glomerulonephritis characterized by the deposition of galactose-deficient IgA1 (Gd-IgA1) in the glomerular mesangium, leading to progressive renal damage. This condition is prevalent in young adults and frequently follows respiratory or gastrointestinal infections. Approximately 20-40% of patients with IgAN progress to end-stage renal disease (ESRD) within 20 years of diagnosis. The pathogenesis of IgAN involves genetic, environmental, and immunological factors. Central to the disease is the production of Gd-IgA1, which forms immune complexes with IgG and IgA antibodies. These complexes deposit in the glomeruli, triggering mesangial cell proliferation and inflammation. Environmental triggers, particularly infections, are thought to exacerbate this immune response. Recent research has focused on understanding the molecular mechanisms underlying aberrant glycosylation of IgA1 and the role of immune complexes in disease progression. Targeting these pathways offers promising therapeutic strategies, such as modulating glycosylation enzymes and developing monoclonal antibodies to reduce pathogenic immune complex formation. Advances in diagnostic tools, such as identifying specific glycosylation patterns, are also aiding in early detection and treatment. Despite these advancements, challenges remain in personalizing treatment and addressing the disease’s heterogeneous clinical presentation.

Keywords: ;

Copyright: © 2024 by Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Wu, W. The Molecular Mechanisms Underlying IgA Nephropathy: Pathogenesis and Potential Therapeutic Targets. Journal of Globe Scientific Reports, 2024, 6, 116. doi:10.69610/j.gsr.202408317
AMA Style
Wu W. The Molecular Mechanisms Underlying IgA Nephropathy: Pathogenesis and Potential Therapeutic Targets. Journal of Globe Scientific Reports; 2024, 6(3):116. doi:10.69610/j.gsr.202408317
Chicago/Turabian Style
Wu, Weifeng 2024. "The Molecular Mechanisms Underlying IgA Nephropathy: Pathogenesis and Potential Therapeutic Targets" Journal of Globe Scientific Reports 6, no.3:116. doi:10.69610/j.gsr.202408317

Article Metrics

Article Access Statistics

References

  1. Levy, M., & Berger, J. (1988). Worldwide perspective of IgA nephropathy. American Journal of kidney diseases, 12(5), 340-347.
  2. FEEHALLY, J. (2000). IgA nephropathy: recent developments. Journal of the American Society of Nephrology, 11(12), 2395-2403.
  3. Schena, F. P., & Nistor, I. (2018, September). Epidemiology of IgA nephropathy: a global perspective. In Seminars in nephrology (Vol. 38, No. 5, pp. 435-442). WB Saunders.
  4. Roberts, I. S. (2014). Pathology of IgA nephropathy. Nature Reviews Nephrology, 10(8), 445-454.
  5. Robert, T., Berthelot, L., Cambier, A., Rondeau, E., & Monteiro, R. C. (2015). Molecular insights into the pathogenesis of IgA nephropathy. Trends in molecular medicine, 21(12), 762-775.
  6. Suzuki, H., Kiryluk, K., Novak, J., Moldoveanu, Z., Herr, A. B., Renfrow, M. B., ... & Julian, B. A. (2011). The pathophysiology of IgA nephropathy. Journal of the American Society of Nephrology, 22(10), 1795-1803.
  7. Knoppova, B., Reily, C., Maillard, N., Rizk, D. V., Moldoveanu, Z., Mestecky, J., ... & Novak, J. (2016). The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Frontiers in immunology, 7, 117.
  8. Yeo, S. C., Cheung, C. K., & Barratt, J. (2018). New insights into the pathogenesis of IgA nephropathy. Pediatric Nephrology, 33, 763-777.
  9. Novak, J., Barratt, J., Julian, B. A., & Renfrow, M. B. (2018, September). Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. In Seminars in nephrology (Vol. 38, No. 5, pp. 461-476). WB Saunders.
  10. Ohyama, Y., Renfrow, M. B., Novak, J., & Takahashi, K. (2021). Aberrantly glycosylated IgA1 in IgA nephropathy: What we know and what we don’t know. Journal of Clinical Medicine, 10(16), 3467.
  11. Makita, Y., Suzuki, H., Kano, T., Takahata, A., Julian, B. A., Novak, J., & Suzuki, Y. (2020). TLR9 activation induces aberrant IgA glycosylation via APRIL-and IL-6–mediated pathways in IgA nephropathy. Kidney international, 97(2), 340-349.
  12. Wang, C., Ye, M., Zhao, Q., Xia, M., Liu, D., He, L., ... & Liu, H. (2019). Loss of the Golgi matrix protein 130 cause aberrant IgA1 glycosylation in IgA nephropathy. American Journal of Nephrology, 49(4), 307-316.
  13. Person, T., King, R. G., Rizk, D. V., Novak, J., Green, T. J., & Reily, C. (2022). Cytokines and production of aberrantly O-glycosylated IgA1, the main autoantigen in IgA nephropathy. Journal of Interferon & Cytokine Research, 42(7), 301-315.
  14. Liu, D., Xia, M., Liu, Y., Tan, X., He, L., Liu, Y., ... & Liu, H. (2020). The upregulation of miR-98-5p affects the glycosylation of IgA1 through cytokines in IgA nephropathy. International Immunopharmacology, 82, 106362.
  15. Suzuki, H., & Novak, J. (2021, October). IgA glycosylation and immune complex formation in IgAN. In Seminars in immunopathology (Vol. 43, No. 5, pp. 669-678). Berlin/Heidelberg: Springer Berlin Heidelberg.
  16. Zachova, K., Jemelkova, J., Kosztyu, P., Ohyama, Y., Takahashi, K., Zadrazil, J., ... & Raska, M. (2022). Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. Journal of the American Society of Nephrology, 33(5), 908-917.
  17. Zhang, S., Sun, H., Zhang, Z., Li, M., Guo, Z., Ye, W., ... & Li, M. (2022). Diagnostic potential of plasma igA1 O-glycans in discriminating igA nephropathy from other glomerular diseases and healthy participants. Frontiers in Molecular Biosciences, 9, 871615.
  18. Noal Moresco, R., Speeckaert, M., Zmonarski, S. C., Krajewska, M., Komuda-Leszek, E., Perkowska-Ptasinska, A., ... & Delanghe, J. (2016). Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and henoch-Schönlein purpura nephritis. BBA CLINICAL, (5), 79-84.
  19. Xu, L., Li, B., Huang, M., Xie, K., Li, D., Li, Y., ... & Fang, J. (2016). Critical role of Kupffer cell CD89 expression in experimental IgA nephropathy. PloS one, 11(7), e0159426.
  20. Papista, C., Lechner, S., Mkaddem, S. B., LeStang, M. B., Abbad, L., Bex-Coudrat, J., ... & Monteiro, R. C. (2015). Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney international, 88(2), 276-285.
  21. Wu, H., Wang, X., Yang, Z., Zhao, Q., Wen, Y., Li, X., ... & Gao, R. (2020). Serum soluble CD89-IgA complexes are elevated in IgA nephropathy without immunosuppressant history. Disease Markers, 2020.
  22. Lechner, S. M., Abbad, L., Boedec, E., Papista, C., Le Stang, M. B., Moal, C., ... & Berthelot, L. (2016). IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. Journal of the American Society of Nephrology, 27(9), 2622-2629.
  23. Esteve Cols, C., Graterol Torres, F. A., Quirant Sánchez, B., Marco Rusiñol, H., Navarro Díaz, M. I., Ara del Rey, J., & Martínez Cáceres, E. M. (2020). Immunological pattern in IgA nephropathy. International journal of molecular sciences, 21(4), 1389.
  24. de Tymowski, C., Heming, N., Correia, M. D., Abbad, L., Chavarot, N., Le Stang, M. B., ... & Mkaddem, S. B. (2019). CD89 is a potent innate receptor for bacteria and mediates host protection from sepsis. Cell reports, 27(3), 762-775.
  25. Gornowicz-Porowska, J., Seraszek-Jaros, A., Bowszyc-Dmochowska, M., Kaczmarek, E., & Dmochowski, M. (2017). Immunoexpression of IgA receptors (CD89, CD71) in dermatitis herpetiformis. Folia Histochemica et Cytobiologica, 55(4), 212-220.
  26. Liu, Q., & Stadtmueller, B. M. (2023). The Structures of Secretory IgA in complex with Streptococcus pyogenes M4 and human CD89 provide insights on mucosal host-pathogen interactions. bioRxiv.
  27. Xu, L. L., Zhou, X. J., & Zhang, H. (2023). An Update on the Genetics of IgA Nephropathy. Journal of Clinical Medicine, 13(1), 123.
  28. Sanchez-Rodriguez, E., Southard, C. T., & Kiryluk, K. (2021). GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clinical Journal of the American Society of Nephrology, 16(3), 458-466.
  29. Li, M., Wang, Y. N., Wang, L., Meah, W. Y., Shi, D. C., Heng, K. K., ... & Yu, X. Q. (2023). Genome-wide association analysis of protein-coding variants in IgA nephropathy. Journal of the American Society of Nephrology, 34(11), 1900-1913.
  30. Buianova, A. A., Proskura, M. V., Cheranev, V. V., Belova, V. A., Shmitko, A. O., Pavlova, A. S., ... & Korostin, D. O. (2023). Candidate genes for IgA nephropathy in pediatric patients: exome-wide association study. International Journal of Molecular Sciences, 24(21), 15984.
  31. In, J. W., Jung, K., Shin, S., Park, K. U., Lee, H., & Song, E. Y. (2022). Association of HLA-DRB1 and-DQB1 alleles with susceptibility to IgA nephropathy in Korean patients. Annals of laboratory medicine, 42(1), 54.
  32. Shwan, N. A., Moise, E. C., Necsoiu, P. E., Farr, A. J., Gale, D. P., Barratt, J., & Armour, J. A. (2023). Segregation analysis identifies specific alpha‐defensin (DEFA1A3) SNP–CNV haplotypes in predisposition to IgA nephropathy. Annals of Human Genetics, 87(1-2), 1-8.
  33. Wang, Y. N., Zhou, X. J., Chen, P., Yu, G. Z., Zhang, X., Hou, P., ... & Zhang, H. (2021). Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy. Journal of the American Society of Nephrology, 32(3), 545-552.
  34. Yuan, H., Li, S., Wang, L., Zhao, X., Xue, L., Lei, X., & Fu, R. (2020). Genetic variants of the MIR31HG gene are related to a risk of IgA nephropathy. International Immunopharmacology, 84, 106533.
  35. Ding, X., Mei, Y., Mao, Z., Long, L., Han, Q., You, Y., & Zhu, H. (2021). Association of immune and inflammatory gene polymorphism with the risk of iga nephropathy: A systematic review and meta-analysis of 45 studies. Frontiers in Immunology, 12, 683913.
  36. Cao, Y., Wang, R., Zhang, H., Zhai, P., & Wei, J. (2022). Genetic variants in MIR3142HG contribute to the predisposition of IgA nephropathy in a Chinese han population. Public Health Genomics, 25(5-6), 209-219.
  37. He, J. W., Zhou, X. J., Li, Y. F., Wang, Y. N., Liu, L. J., Shi, S. F., ... & Zhang, H. (2021). Associations of genetic variants contributing to gut microbiota composition in immunoglobin A nephropathy. Msystems, 6(1), 10-1128.
  38. Chang, S., & Li, X. K. (2020). The role of immune modulation in pathogenesis of IgA nephropathy. Frontiers in Medicine, 7, 92.
  39. Gentile, M., Sanchez-Russo, L., Riella, L. V., Verlato, A., Manrique, J., Granata, S., ... & Cravedi, P. (2023). Immune abnormalities in IgA nephropathy. Clinical Kidney Journal, 16(7), 1059-1070.
  40. Person, T., King, R. G., Rizk, D. V., Novak, J., Green, T. J., & Reily, C. (2022). Cytokines and production of aberrantly O-glycosylated IgA1, the main autoantigen in IgA nephropathy. Journal of Interferon & Cytokine Research, 42(7), 301-315.
  41. Selvaskandan, H., Shi, S., Twaij, S., Cheung, C. K., & Barratt, J. (2020). Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Frontiers in Immunology, 11, 572754.
  42. Svirskaya, A., Nizheharodava, D., Komissarov, K., Minchenko, E., Pilotovich, V., & Zafranskaya, M. (2021). γδТ-LYMPHOCYTES IN PATIENTS WITH IgA-NEPHROPATHY. Journal of the Belarusian State University. Ecology.
  43. Zheng, Y., Lu, P., Deng, Y., Wen, L., Wang, Y., Ma, X., ... & Tang, F. (2020). Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy. Cell Reports, 33(12).
  44. Zachova, K., Jemelkova, J., Kosztyu, P., Ohyama, Y., Takahashi, K., Zadrazil, J., ... & Raska, M. (2022). Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. Journal of the American Society of Nephrology, 33(5), 908-917.
  45. Uenoyama, Y., Matsuda, A., Ohashi, K., Ueda, K., Yokoyama, M., Kyoutou, T., ... & Matsuzaki, H. (2022). Development and evaluation of a robust sandwich immunoassay system detecting serum WFA-reactive igA1 for diagnosis of igA nephropathy. International Journal of Molecular Sciences, 23(9), 5165.
  46. Rubin, J., Stojanovic, M., Gharavi, A., & Hess, H. (2023). 261 Characterization of Glycosylation Patterns of Single IgA Molecules Using Single-Molecule Fluorescence Microscopy. Journal of Clinical and Translational Science, 7(s1), 79-79.
  47. Matsumoto, Y., Aryal, R. P., Heimburg-Molinaro, J., Park, S. S., Wever, W. J., Lehoux, S., ... & Cummings, R. D. (2022). Identification and characterization of circulating immune complexes in IgA nephropathy. Science advances, 8(43), eabm8783.
  48. Molyneux, K., Scionti, K., Wolski, W., Pfammatter, S., Kunz, L., Mannaa, A., & Barratt, J. (2022). FC050: Nefecon® selectively modifies the composition of circulating immune complexes in IGA nephropathy. Nephrology Dialysis Transplantation, 37(Supplement_3), gfac107-002.
  49. Jash, R., Maparu, K., Seksaria, S., & Das, S. (2024). Decrypting the Pathological Pathways in IgA Nephropathy. Recent Advances in Inflammation & Allergy Drug Discovery, 18(1), 43-56.
  50. Maixnerova, D., El Mehdi, D., Rizk, D. V., Zhang, H., & Tesar, V. (2022). New treatment strategies for IgA nephropathy: targeting plasma cells as the main source of pathogenic antibodies. Journal of Clinical Medicine, 11(10), 2810.
  51. Maixnerova, D., & Tesar, V. (2023). Emerging role of monoclonal antibodies in the treatment of IgA nephropathy. Expert Opinion on Biological Therapy, 23(5), 419-427.
  52. Ding, L., Chen, X., Cheng, H., Zhang, T., & Li, Z. (2022). Advances in IgA glycosylation and its correlation with diseases. Frontiers in chemistry, 10, 974854.
  53. Zhang, W., Yuan, Y., Li, X., Luo, J., Zhou, Z., Yu, L., & Wang, G. (2022). Orange-derived and dexamethasone-encapsulated extracellular vesicles reduced proteinuria and alleviated pathological lesions in IgA nephropathy by targeting intestinal lymphocytes. Frontiers in Immunology, 13, 900963.
  54. Barratt, J., Tumlin, J. A., Suzuki, Y., Kao, A., Aydemir, A., Zima, Y., & Appel, G. (2020). MO039 the 24-week interim analysis results of a randomized, double-blind, placebo-controlled phase II study of atacicept in patients with IGA nephropathy and persistent proteinuria. Nephrology Dialysis Transplantation, 35(Supplement_3), gfaa140-MO039.
  55. Barratt, J., Kooienga, L., Hour, B., Agha, I., Schwartz, B., Sorensen, B., ... & Glicklich, A. (2022). MO212: Updated Interim Results of A Phase 1/2 Study to Investigate the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Clinical Activity of BION-1301 in Patients With IGA Nephropathy. Nephrology Dialysis Transplantation, 37(Supplement_3), gfac067-011.
  56. Floege, J., Rauen, T., & Tang, S. C. (2021, October). Current treatment of IgA nephropathy. In Seminars in immunopathology (pp. 1-12). Springer Berlin Heidelberg.
  57. Li, H., Lu, R., Pang, Y., Li, J., Cao, Y., Fu, H., ... & Zhou, J. (2020). Zhen-Wu-Tang protects IgA nephropathy in rats by regulating exosomes to inhibit NF-κB/NLRP3 pathway. Frontiers in Pharmacology, 11, 1080.
  58. Roberts, E. (2023). New Horizons in IgA Nephropathy: A Focus on Current Treatment and Emerging Solutions. European Medical Journal.
  59. Takahata, A., Arai, S., Hiramoto, E., Kitada, K., Kato, R., Makita, Y., ... & Suzuki, Y. (2020). Crucial role of AIM/CD5L in the development of glomerular inflammation in IgA nephropathy. Journal of the American Society of Nephrology, 31(9), 2013-2024.
  60. URIOL, M., Obrador Mulet, A., Tugores, A., Daza, V., Gomez, A., & Gasco, J. (2020). P0436 REFRACTORY IGA NEPHROPATHY. A MULTICYTOKINE NORMALIZED LEVELS THERAPY FOR T CELLS IMBALANCE. Nephrology Dialysis Transplantation, 35(Supplement_3), gfaa142-P0436.
  61. Zhuang, Y., Lu, H., & Li, J. (2024). Advances in the treatment of IgA nephropathy with biological agents. Chronic Diseases and Translational Medicine, 10(1), 1-11.